

Serie 10

Given constants

$$\epsilon_0 = 8.85 \cdot 10^{-14} [F/cm]$$
$$\epsilon_{ox} = 3.9 \cdot \epsilon_0$$

Exercise 01

Consider a MOS transistor polarized as in Figure 1. We know: $V_{th} = 0.7$ [V], $W = 10$ [μm], $L = 0.5$ [μm], $t_{ox} = 20$ [nm]. When the circuit is polarized with $V_{DD} = 3.3$ [V], the current flowing through the channel of the transistor is $I_D = 0.5$ [mA].

The value of electron mobility, μ_n , in the inversion channel of the MOS transistor is:

- a) ~ 200 [$cm^2 V^{-1} s^{-1}$]
- b) ~ 400 [$cm^2 V^{-1} s^{-1}$]
- c) ~ 600 [$cm^2 V^{-1} s^{-1}$]

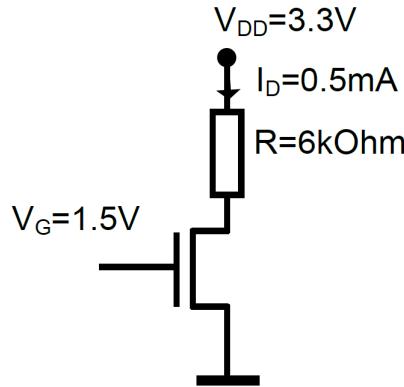


Figure 1: MOS transistor circuit.

Exercise 02

Consider a n-MOSFET on a p-type Si substrate. We know: $W = 10$ [μm], $L = 1$ [μm], $t_{ox} = 5$ [nm]. The measured transistor characteristics are shown

in Figure 2. For Fig. 2a, $g_m = 1.4 \cdot 10^{-4} \text{ [A/V]}$; for Fig. 2b, we don't know the scale of the axes.

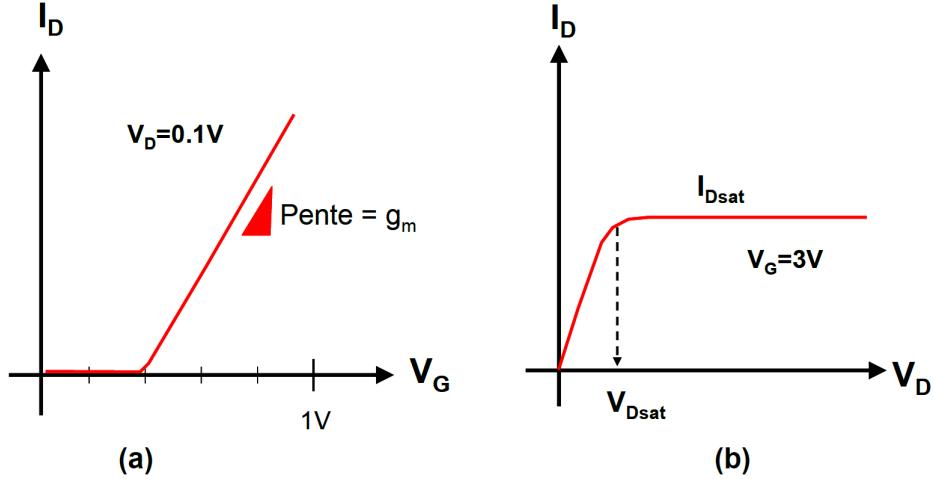


Figure 2: MOSFET characteristics.

Q1. By looking at the $I_D - V_G$ characteristics, we can conclude that at $V_G = 0.8 \text{ [V]}$ the MOSFET is in:

- a) Saturation region.
- b) Linear region.
- c) Cut-off region.

Q2. The threshold voltage V_{th} of the MOSFET is:

- a) $V_{th} = 0.1 \text{ [V]}$
- b) $V_{th} = 0.2 \text{ [V]}$
- c) $V_{th} = 0.4 \text{ [V]}$
- d) $V_{th} = 1 \text{ [V]}$

Q3. The mobility μ_n of the electrons in the n-channel is:

- a) $\sim 200 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}\text{]}$
- b) $\sim 300 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}\text{]}$
- c) $\sim 400 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}\text{]}$
- d) $\sim 500 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}\text{]}$
- e) $\sim 600 \text{ [cm}^2 \text{ V}^{-1} \text{ s}^{-1}\text{]}$

Q4. For $V_G = 3$ [V], the saturation voltage V_{Dsat} is:

- a) $V_{Dsat} = 2.9$ [V]
- b) $V_{Dsat} = 2.8$ [V]
- c) $V_{Dsat} = 2.6$ [V]
- d) $V_{Dsat} = 2$ [V]

Q5. The saturation current I_{Dsat} is:

- a) $I_{Dsat} = 2.1$ [mA]
- b) $I_{Dsat} = 4.7$ [mA]
- c) $I_{Dsat} = 6.8$ [mA]

Q6. The trend of the $I_D - V_D$ characteristics allows us to conclude that:

- a) This n-MOSFET has a long channel.
- b) This n-MOSFET shows short channel effects.
- c) We need the $I_D - V_G$ characteristics below threshold, in *log* scale, to determine if there are short channel effects.

Exercice 03

Choose the correct statements regarding MOS transistors on fully-depleted silicon-on-insulator (FD-SOI) substrates:

- A)** The depth of the depletion region controlled by the gate is thinner than the thickness of the Si film of the SOI.
- B)** The junction leakage currents in FD-SOI are smaller than for MOS transistor on bulk Si, for the same technological node (channel length).
- C)** A kink effect in the $I_D - V_D$ characteristics exists, where the drain current shows an unusual increase before the breakdown.
- D)** The FD-SOI shows a better resistance to ionizing radiations, with respect to partially-depleted SOI.
- E)** FD-SOI transistors show stronger short-channel effects than their counterparts in bulk Si.
- F)** The FD-SOI has inherent self-heating effects, because of the buried oxide, which increases the thermal resistance.
- G)** For the same channel length, transistors on FD-SOI can operate at higher frequency with respect to those on bulk Si.